Via http://www.cnblogs.com/Seiyagoo/archive/2013/10/13/3366290.html
一、本文内容
二、算法应用
三、2-3-4树
注:上面的变换在树中任意位置都成立。
Via http://www.cnblogs.com/Seiyagoo/archive/2013/10/13/3366290.html
若w[a,c]+w[b,d] \(\leq\) w[b,c]+w[a,d] (a<b<c<d)
则w满足凸四边形不等式
若w[i,j] \(\leq\) w[i,j] ([i,j]\(\subseteq\) [i',j'])
则w满足区间单调
d满足凸四边形不等式 k[i,j-1] \(\leq\) k[i,j] \(\leq\) k[i+1,j]
w为凸 \(\Leftrightarrow\) w[i,j]+w[i+1,j+1] \(\leq\) w[i+1,j]+w[i,j+1]
满足决策单调性,可用单调队列优化决策
Via http://www.shuizilong.com/house/archives/%E6%97%A5%E5%B8%B8%E6%A8%A1%E6%9D%BF-manual-ver-0-1/
Orz岛娘……
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
/** Micro Mezz Macro Flation -- Overheated Economy ., Last Update: Aug. 20th 2013 **/ //{ /** Header .. **/ //{ #pragma comment(linker, "/STACK:36777216") //#pragma GCC optimize ("O2") #define LOCAL //#include "testlib.h" #include <functional> #include <algorithm> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <numeric> #include <cstring> #include <climits> #include <cassert> #include <complex> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <list> #include <set> #include <map> //#include <tr1/unordered_set> //#include <tr1/unordered_map> //#include <array> using namespace std; #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) #define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) #define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) #define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) #define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) #define REP_C_N(i, n) for (int n____=(i=0,int(n));i<n____;++i) #define FOR_C_N(i, a, b) for (int b____=(i=0,int(b);i<b____;++i) #define DWN_C_N(i, b, a) for (int a____=(i=b-1,int(a));i>=a____;--i) #define REP_1_C_N(i, n) for (int n____=(i=1,int(n));i<=n____;++i) #define FOR_1_C_N(i, a, b) for (int b____=(i=1,int(b);i<=b____;++i) #define DWN_1_C_N(i, b, a) for (int a____=(i=b,int(a));i>=a____;--i) #define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it) #define REP_S(i, str) for (char*i=str;*i;++i) #define REP_L(i, hd, nxt) for (int i=hd;i;i=nxt[i]) #define REP_G(i, u) REP_L(i,hd[u],suc) #define REP_SS(x, s) for (int x=s;x;x=(x-1)&s) #define DO(n) for ( int ____n = n; ____n-->0; ) #define REP_2(i, j, n, m) REP(i, n) REP(j, m) #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) #define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l) #define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l) #define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn) #define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn) #define ALL(A) A.begin(), A.end() #define LLA(A) A.rbegin(), A.rend() #define CPY(A, B) memcpy(A, B, sizeof(A)) #define INS(A, P, B) A.insert(A.begin() + P, B) #define ERS(A, P) A.erase(A.begin() + P) #define BSC(A, x) (lower_bound(ALL(A), x) - A.begin()) #define CTN(T, x) (T.find(x) != T.end()) #define SZ(A) int((A).size()) #define PB push_back #define MP(A, B) make_pair(A, B) #define PTT pair<T, T> #define Ts *this #define rTs return Ts #define fi first #define se second #define re real() #define im imag() #define Rush for(int ____T=RD(); ____T--;) #define Display(A, n, m) { \ REP(i, n){ \ REP(j, m-1) cout << A[i][j] << " "; \ cout << A[i][m-1] << endl; \ } \ } #define Display_1(A, n, m) { \ REP_1(i, n){ \ REP_1(j, m-1) cout << A[i][j] << " "; \ cout << A[i][m] << endl; \ } \ } typedef long long LL; //typedef long double DB; typedef double DB; typedef unsigned UINT; typedef unsigned long long ULL; typedef vector<int> VI; typedef vector<char> VC; typedef vector<string> VS; typedef vector<LL> VL; typedef vector<DB> VF; typedef set<int> SI; typedef set<string> SS; typedef map<int, int> MII; typedef map<string, int> MSI; typedef pair<int, int> PII; typedef pair<LL, LL> PLL; typedef vector<PII> VII; typedef vector<VI> VVI; typedef vector<VII> VVII; template<class T> inline T& RD(T &); template<class T> inline void OT(const T &); //inline int RD(){int x; return RD(x);} inline LL RD(){LL x; return RD(x);} inline DB& RF(DB &); inline DB RF(){DB x; return RF(x);} inline char* RS(char *s); inline char& RC(char &c); inline char RC(); inline char& RC(char &c){scanf(" %c", &c); return c;} inline char RC(){char c; return RC(c);} //inline char& RC(char &c){c = getchar(); return c;} //inline char RC(){return getchar();} template<class T> inline T& RDD(T &); inline LL RDD(){LL x; return RDD(x);} template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;} template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;} template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;} template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;} template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;} template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);} template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);} template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} inline char& RC(char &a, char &b){RC(a), RC(b); return a;} inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;} inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;} inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;} inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;} inline void RS(char *s1, char *s2){RS(s1), RS(s2);} inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);} template<class T0,class T1>inline void RDD(T0&a, T1&b){RDD(a),RDD(b);} template<class T0,class T1,class T2>inline void RDD(T0&a, T1&b, T2&c){RDD(a),RDD(b),RDD(c);} template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} template<class T> inline void CLR(T &A){A.clear();} template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);} template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);} template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);} template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();} template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();} template<class T> inline void CLR(stack<T> &S){while (!S.empty()) S.pop();} template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} template<class T> inline bool EPT(T &a){return a.empty();} template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;} template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;} template<class T> inline T& RVS(T &A){reverse(ALL(A)); return A;} template<class T> inline T& UNQQ(T &A){A.resize(unique(ALL(A))-A.begin());return A;} template<class T> inline T& UNQ(T &A){SRT(A);return UNQQ(A);} //} /** Constant List .. **/ //{ const int MOD = int(1e9) + 7; //int MOD = 99990001; const int INF = 0x3f3f3f3f; const LL INFF = 0x3f3f3f3f3f3f3f3fLL; const DB EPS = 1e-12; const DB OO = 1e20; const DB PI = acos(-1.0); //M_PI; const int dx[] = {-1, 0, 1, 0}; const int dy[] = {0, 1, 0, -1}; //} /** Add On .. **/ //{ // <<= '0. Nichi Joo ., //{ template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} template<class T> inline void checkMax(T &a,const T b){if (a<b) a=b;} template<class T> inline void checkMin(T &a, T &b, const T x){checkMin(a, x), checkMin(b, x);} template<class T> inline void checkMax(T &a, T &b, const T x){checkMax(a, x), checkMax(b, x);} template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));} template<class T> inline T sqr(T a){return a*a;} template<class T> inline T cub(T a){return a*a*a;} template<class T> inline T ceil(T x, T y){return (x - 1) / y + 1;} inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;} inline int sgn(DB x, DB y){return sgn(x - y);} inline DB cos(DB a, DB b, DB c){return (sqr(a)+sqr(b)-sqr(c))/(2*a*b);} inline DB cot(DB x){return 1./tan(x);}; inline DB sec(DB x){return 1./cos(x);}; inline DB csc(DB x){return 1./sin(x);}; //} // <<= '1. Bitwise Operation ., //{ namespace BO{ inline bool _1(int x, int i){return bool(x&1<<i);} inline bool _1(LL x, int i){return bool(x&1LL<<i);} inline LL _1(int i){return 1LL<<i;} inline LL _U(int i){return _1(i) - 1;}; inline int reverse_bits(int x){ x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); return x; } inline LL reverse_bits(LL x){ x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); return x; } template<class T> inline bool odd(T x){return x&1;} template<class T> inline bool even(T x){return !odd(x);} template<class T> inline T low_bit(T x) {return x & -x;} template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;} template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;} template<class T> inline int cover_idx(T x){int p = 0; while (_1(p) < x ) ++p; return p;} inline int clz(int x){return __builtin_clz(x);} inline int clz(LL x){return __builtin_clzll(x);} inline int ctz(int x){return __builtin_ctz(x);} inline int ctz(LL x){return __builtin_ctzll(x);} inline int lg2(int x){return !x ? -1 : 31 - clz(x);} inline int lg2(LL x){return !x ? -1 : 63 - clz(x);} inline int low_idx(int x){return !x ? -1 : ctz(x);} inline int low_idx(LL x){return !x ? -1 : ctz(x);} inline int high_idx(int x){return lg2(x);} inline int high_idx(LL x){return lg2(x);} inline int parity(int x){return __builtin_parity(x);} inline int parity(LL x){return __builtin_parityll(x);} inline int count_bits(int x){return __builtin_popcount(x);} inline int count_bits(LL x){return __builtin_popcountll(x);} } using namespace BO;//} // <<= '9. Comutational Geometry .,//{ namespace CG{ #define cPo const Po& #define cLine const Line& #define cSeg const Seg& inline DB dist2(DB x,DB y){return sqr(x)+sqr(y);} struct Po{ DB x,y;Po(DB x=0,DB y=0):x(x),y(y){} void in(){RF(x,y);}void out(){printf("(%.2f,%.2f)",x,y);} inline friend istream&operator>>(istream&i,Po&p){return i>>p.x>>p.y;} inline friend ostream&operator<<(ostream&o,Po p){return o<<"("<<p.x<<", "<<p.y<< ")";} Po operator-()const{return Po(-x,-y);} Po&operator+=(cPo p){x+=p.x,y+=p.y;rTs;}Po&operator-=(cPo p){x-=p.x,y-=p.y;rTs;} Po&operator*=(DB k){x*=k,y*=k;rTs;}Po&operator/=(DB k){x/=k,y/=k;rTs;} Po&operator*=(cPo p){rTs=Ts*p;}Po&operator/=(cPo p){rTs=Ts/p;} Po operator+(cPo p)const{return Po(x+p.x,y+p.y);}Po operator-(cPo p)const{return Po(x-p.x,y-p.y);} Po operator*(DB k)const{return Po(x*k,y*k);}Po operator/(DB k)const{return Po(x/k,y/k);} Po operator*(cPo p)const{return Po(x*p.x-y*p.y,y*p.x+x*p.y);}Po operator/(cPo p)const{return Po(x*p.x+y*p.y,y*p.x-x*p.y)/p.len2();} bool operator==(cPo p)const{return!sgn(x,p.x)&&!sgn(y,p.y);};bool operator!=(cPo p)const{return sgn(x,p.x)||sgn(y,p.y);} bool operator<(cPo p)const{return sgn(x,p.x)<0||!sgn(x,p.x)&&sgn(y,p.y)<0;}bool operator<=(cPo p)const{return sgn(x,p.x)<0||!sgn(x,p.x)&&sgn(y,p.y)<=0;} bool operator>(cPo p)const{return!(Ts<=p);}bool operator >=(cPo p)const{return!(Ts<p);} DB len2()const{return dist2(x,y);}DB len()const{return sqrt(len2());}DB arg()const{return atan2(y,x);} Po&_1(){rTs/=len();}Po&conj(){y=-y;rTs;}Po<(){swap(x,y),x=-x;rTs;}Po&rt(){swap(x,y),y=-y;rTs;} Po&rot(DB a,cPo o=Po()){Ts-=o;Ts*=Po(cos(a),sin(a));rTs+=o;} }; inline DB dot(DB x1,DB y1,DB x2,DB y2){return x1*x2+y1*y2;} inline DB dot(cPo a,cPo b){return dot(a.x,a.y,b.x,b.y);} inline DB dot(cPo p0,cPo p1,cPo p2){return dot(p1-p0,p2-p0);} inline DB det(DB x1,DB y1,DB x2,DB y2){return x1*y2-x2*y1;} inline DB det(cPo a,cPo b){return det(a.x,a.y,b.x,b.y);} inline DB det(cPo p0,cPo p1,cPo p2){return det(p1-p0,p2-p0);} inline DB ang(cPo p0,cPo p1){return acos(dot(p0,p1)/p0.len()/p1.len());} inline DB ang(cPo p0,cPo p1,cPo p2){return ang(p1-p0,p2-p0);} inline DB ang(cPo p0,cPo p1,cPo p2,cPo p3){return ang(p1-p0,p3-p2);} inline DB dist2(const Po &a, const Po &b){return dist2(a.x-b.x, a.y-b.y);} template<class T1, class T2> inline int dett(const T1 &x, const T2 &y){return sgn(det(x, y));} template<class T1, class T2, class T3> inline int dett(const T1 &x, const T2 &y, const T3 &z){return sgn(det(x, y, z));} template<class T1, class T2, class T3, class T4> inline int dett(const T1 &x, const T2 &y, const T3 &z, const T4 &w){return sgn(det(x, y, z, w));} template<class T1, class T2> inline int dott(const T1 &x, const T2 &y){return sgn(dot(x, y));} template<class T1, class T2, class T3> inline int dott(const T1 &x, const T2 &y, const T3 &z){return sgn(dot(x, y, z));} template<class T1, class T2, class T3, class T4> inline int dott(const T1 &x, const T2 &y, const T3 &z, const T4 &w){return sgn(dot(x, y, z, w));} template<class T1, class T2> inline DB arg(const T1 &x, const T2 &y){DB a=ang(x,y);return~dett(x,y)?a:2*PI-a;} template<class T1, class T2, class T3> inline DB arg(const T1 &x, const T2 &y, const T3 &z){DB a=ang(x,y,z);return~dett(x,y,z)?a:2*PI-a;} template<class T1, class T2, class T3, class T4> inline DB arg(const T1 &x, const T2 &y, const T3 &z, const T4 &w){DB a=ang(x,y,z,w);return~dett(x,y,z,w)?a:2*PI-a;} template<class T1, class T2> inline DB dist(const T1 &x, const T2 &y){return sqrt(dist2(x, y));} template<class T1, class T2, class T3> inline DB dist(const T1 &x, const T2 &y, const T3 &z){return sqrt(dist2(x, y, z));} inline Po _1(Po p){return p._1();}inline Po conj(Po p){return p.conj();} inline Po lt(Po p){return p.lt();}inline Po rt(Po p){return p.rt();} inline Po rot(Po p,DB a,cPo o=Po()){return p.rot(a,o);} inline Po operator *(DB k,cPo p){return p*k;} inline Po operator /(DB k,cPo p){return conj(p)*k/p.len2();} typedef vector<Po> VP; struct Line{ Po a,b;Line(cPo a=Po(),cPo b=Po()):a(a),b(b){} Line(DB x0,DB y0,DB x1,DB y1):a(Po(x0,y0)),b(Po(x1,y1)){} Line(cLine l):a(l.a),b(l.b){} //Ax+By+C=0 Line(DB A,DB B,DB C){ C=-C;if(!::sgn(A))a=Po(0,C/B),b=Po(1,C/B); else if(!::sgn(B))a=Po(C/A,0),b=Po(C/A,1); else a=Po(0,C/B),b=Po(1,(C-A)/B); } void in(){a.in(),b.in();} inline friend istream&operator>>(istream&i,Line& p){return i>>p.a>>p.b;} inline friend ostream&operator<<(ostream&o,Line p){return o<<p.a<<"-"<< p.b;} Line operator+(cPo x)const{return Line(a+x,b+x);} Line operator-(cPo x)const{return Line(a-x,b-x);} Line operator*(DB k)const{return Line(a*k,b*k);} Line operator/(DB k)const{return Line(a/k,b/k);} Po operator*(cLine)const; Po d()const{return b-a;}DB len2()const{return d().len2();}DB len()const{return d().len();}DB arg()const{return d().arg();} int sgn(cPo p)const{return dett(a, b, p);} int sgn(cLine)const; bool sameSgn(cPo p1,cPo p2)const{return sgn(p1)==sgn(p2);} void getEquation(DB&K,DB&B)const{ K = ::sgn(a.x, b.x) ? (b.y-a.y)/(b.x-a.x) : OO; B = a.y - K*a.x; } void getEquation(DB&A,DB&B,DB&C)const{A=a.y-b.y,B=b.x-a.x,C=det(a, b);} Line&push(DB r){ // 正数右手螺旋向里 Po v=d()._1().lt()*r;a+=v,b+=v; rTs; } }; inline DB dot(cLine l1,cLine l2){return dot(l1.d(),l2.d());} inline DB dot(cLine l,cPo p){return dot(l.a,l.b,p);} inline DB dot(cPo p,cLine l){return dot(p,l.a,l.b);} inline DB det(cLine l1,cLine l2){return det(l1.d(),l2.d());} inline DB det(cLine l,cPo p){return det(l.a,l.b,p);} inline DB det(cPo p,cLine l){return det(p,l.a,l.b);} inline DB ang(cLine l0,cLine l1){return ang(l0.d(),l1.d());} inline DB ang(cLine l,cPo p){return ang(l.a,l.b,p);} inline DB ang(cPo p,cLine l){return ang(p,l.a,l.b);} inline int Line::sgn(cLine l)const{return dett(Ts, l);} inline Po Line::operator*(cLine l)const{return a+d()*det(a,l)/det(Ts,l);} inline Po operator&(cPo p,cLine l){return l*Line(p,p+l.d().lt());} inline Po operator%(cPo p,cLine l){return p&l*2-p;} inline Line push(Line l, DB r){return l.push(r);} struct Seg: public Line{ Seg(cPo a=Po(),cPo b=Po()):Line(a,b){} Seg(DB x0,DB y0,DB x1,DB y1):Line(x0,y0,x1,y1){} Seg(cLine l):Line(l){} Seg(const Po &a,DB alpha):Line(a,alpha){} Seg(DB A,DB B,DB C):Line(A,B,C){} inline int sgn(cPo p)const; inline bool qrt(cSeg l)const; inline int sgn(cSeg l)const; }; // -1不相交 0相交(不规范) 1相交(规范) inline int Seg::sgn(cPo p)const{return -dott(p,a,b);} // quick_rejection_test inline bool Seg::qrt(cSeg l)const{ return min(a.x,b.x)<=max(l.a.x,l.b.x)&&min(l.a.x,l.b.x)<=max(a.x,b.x)&& min(a.y,b.y)<=max(l.a.y,l.b.y)&&min(l.a.y,l.b.y)<=max(a.y,b.y); } inline int Seg::sgn(cSeg l)const{ if (!qrt(l)) return -1; /*return (dett(a,b,l.a)*dett(a,b,l.b)<=0 && dett(l.a,l.b,a)*dett(l.a,l.b,b)<=0)?1:-1;*/ int d1=dett(a,b,l.a),d2=dett(a,b,l.b),d3=dett(l.a,l.b,a),d4=dett(l.a,l.b,b); if ((d1^d2)==-2&&(d3^d4)==-2)return 1; return ((!d1&&dott(l.a-a,l.a-b)<=0)||(!d2&&dott(l.b-a,l.b-b)<=0)|| (!d3&&dott(a-l.a,a-l.b)<=0)||(!d4&&dott(b-l.a,b-l.b)<=0))?0:-1; } //inline DB dist2(cLine l,cPo p){return sqr(fabs(dot(lt(l.d()), p-l.a)))/l.len2();} inline DB dist2(cLine l,cPo p){return sqr(fabs(det(l.d(), p-l.a)))/l.len2();} inline DB dist2(cLine l1,cLine l2){return dett(l1,l2)?0:dist2(l1,l2.a);} inline DB dist2(cSeg l,cPo p){ Po pa = p - l.a, pb = p - l.b; if (dott(l.d(), pa) <= 0) return pa.len2(); if (dott(l.d(), pb) >= 0) return pb.len2(); return dist2(Line(l), p); } inline DB dist2(cSeg s,cLine l){ Po v1=s.a-l.a,v2=s.b-l.a;DB d1=det(l.d(),v1),d2=det(l.d(),v2); return sgn(d1)!=sgn(d2) ? 0 : sqr(min(fabs(d1), fabs(d2)))/l.len2(); } inline DB dist2(cSeg l1,cSeg l2){ if (~l1.sgn(l2)) return 0; else return min(dist2(l2,l1.a), dist2(l2,l1.b), dist2(l1,l2.a), dist2(l1,l2.b)); } template<class T1, class T2> inline DB dist2(const T1& a, const T2& b){ return dist2(b, a); } } using namespace CG;//} //} /** I/O Accelerator Interface .. **/ //{ #define g (c=getchar()) #define d isdigit(g) #define p x=x*10+c-'0' #define n x=x*10+'0'-c #define pp l/=10,p #define nn l/=10,n template<class T> inline T& RD(T &x){ char c;while(!d);x=c-'0';while(d)p; return x; } template<class T> inline T& RDD(T &x){ char c;while(g,c!='-'&&!isdigit(c)); if (c=='-'){x='0'-g;while(d)n;} else{x=c-'0';while(d)p;} return x; } inline DB& RF(DB &x){ //scanf("%lf", &x); char c;while(g,c!='-'&&c!='.'&&!isdigit(c)); if(c=='-')if(g=='.'){x=0;DB l=1;while(d)nn;x*=l;} else{x='0'-c;while(d)n;if(c=='.'){DB l=1;while(d)nn;x*=l;}} else if(c=='.'){x=0;DB l=1;while(d)pp;x*=l;} else{x=c-'0';while(d)p;if(c=='.'){DB l=1;while(d)pp;x*=l;}} return x; } #undef nn #undef pp #undef n #undef p #undef d #undef g inline char* RS(char *s){ //gets(s); scanf("%s", s); return s; } LL last_ans; int Case; template<class T> inline void OT(const T &x){ //printf("Case %d: ", ++Case); //printf("%lld\n", x); //printf("%.4f\n", x); printf("%d\n", x); //cout << x << endl; //last_ans = x; } //} //}/* .................................................................................................................................. */ |
Via FHQ神犇http://fanhq666.blog.163.com/blog/static/81943426201062865551410/
石子合并(每次合并相邻的两堆石子,代价为这两堆石子的重量和,把一排石子合并为一堆,求最小代价)是一个经典的问题。dp可以做到O(n*n)的时间复杂度,方法是:
设f[i,j]为合并从i到j的石子所用最小代价。
f[i,j]=min(sum(i,j)+f[i,k]+f[k+1,j])对所有i<=k<j,其中sum(i,j)表示从i到j的石子重量之和。
设上式取等时k的值为w[i,j],有神牛证明过:w[i,j]>=w[i,j-1],w[i,j]<=w[i+1,j]
这样,枚举k的时候,就有了一个上下界,从而搞掉了一维。
而GarsiaWachs算法可以把时间复杂度压缩到O(nlogn)。
具体的算法及证明可以参见《The Art of Computer Programming》第3卷6.2.2节Algorithm G和Lemma W,Lemma X,Lemma Y,Lemma Z。
只能说一个概要吧:
设一个序列是A[0..n-1],每次寻找最小的一个满足A[k-1]<=A[k+1]的k,(方便起见设A[-1]和A[n]等于正无穷大)
那么我们就把A[k]与A[k-1]合并,之后找最大的一个满足A[j]>A[k]+A[k-1]的j,把合并后的值A[k]+A[k-1]插入A[j]的后面。
有定理保证,如此操作后问题的答案不会改变。
举个例子:
186 64 35 32 103
因为35<103,所以最小的k是3,我们先把35和32删除,得到他们的和67,并向前寻找一个第一个超过67的数,把67插入到他后面
186 64(k=3,A[3]与A[2]都被删除了) 103
186 67(遇到了从右向左第一个比67大的数,我们把67插入到他后面) 64 103
186 67 64 103 (有定理保证这个序列的答案加上67就等于原序列的答案)
现在由5个数变为4个数了,继续!
186 (k=2,67和64被删除了)103
186 131(就插入在这里) 103
186 131 103
现在k=2(别忘了,设A[-1]和A[n]等于正无穷大)
234 186
420
最后的答案呢?就是各次合并的重量之和呗。420+234+131+67=852,哈哈,算对了。
证明嘛,基本思想是通过树的最优性得到一个节点间深度的约束,之后 证明操作一次之后的解可以和原来的解一一对应,并保证节点移动之后他所在的 深度不会改变。详见TAOCP。
具体实现这个算法需要一点技巧,精髓在于不停快速寻找最小的k,即维护一个“2-递减序列”
朴素的实现的时间复杂度是O(n*n),但可以用一个平衡树来优化(好熟悉的优化方法),使得最终复杂度为O(nlogn)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
#include <cstdio> #define NMax 50000 using namespace std; int A[NMax],N,T; int ret; void combine(int k){ int tmp=A[k]+A[k-1],j; ret+=tmp; for (int i=k;i<T-1;i++)A[i]=A[i+1]; T--; for (j=k-1;j>0 && A[j-1]<tmp;j--)A[j]=A[j-1]; A[j]=tmp; while (j>=2 && A[j]>=A[j-2]){ int d=T-j; combine(j-1); j=T-d; } } int main() { while (scanf("%d",&N),N){ for (int i=0;i<N;i++)scanf("%d",A+i); T=1;ret=0; for (int i=1;i<N;i++){ A[T++]=A[i]; while (T>=3 && A[T-3]<=A[T-1])combine(T-2); } while (T>1)combine(T-1); printf("%d\n",ret); } return 0; } |
Via http://en.wikipedia.org/wiki/Segment_tree
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
Applications of the segment tree are in the areas of computational geometry, and geographic information systems.
The segment tree can be generalized to higher dimension spaces as well.