[Dr.Lib@ASTL]开始使用Open-Channel SSD

Open-Channel SSD文档翻译:

https://github.com/OpenChannelSSD/documentation/blob/master/docs/gettingstarted.md

 

要使用Open-Channel SSD,操作系统内核的支持是必要的。通过LightNVM 子系统的引入,Linux内核在4.4及以后的版本添加了Open-Channel SSD支持。OpenChannelSSD 这个项目仍在开发中,推荐使用最新的 release 版本或者RC版。最新的源码可以参见https://github.com/OpenChannelSSD/linux

启动一个受支持的内核后,需要满足下列条件:

  1. 一个兼容的设备,如QEMU NVMe或者一个Open-Channel SSD,如 CNEX Labs LightNVM SDK.
  2. 驱动之上的媒体管理器。媒体管理器负责管理设备的分区表。
  3. 块设备管理器之上暴露Open-Channel SSD。

继续阅读 “[Dr.Lib@ASTL]开始使用Open-Channel SSD” »

……其实只是想给这几天啥都没干找个借口而已嘛

Win10

GTA GTC15前就看到10240出来,抱着尝鲜的心态下了偷跑的ISO刻了个U盘,备份一下就从Win8.1U1Home升级到了Win10Pro……额果然没办法激活,先KMS撑了几天。

回来后就听说Win10开始推送了,想一想KMS续命可麻烦了……老老实实OTA

还原8.1,联想一键备份duang的一下告诉我“不能访问文件”……呵呵你把我C盘格了再告诉我没法还原?

神奇的是一个NTFS分区被格居然搞的我的Ubuntu都起不来了,我望着我电脑上唯一能用的系统——android5.1在月光下凌乱。

用U盘全新安装了个Win10Home,还是没法激活,先将就用着

折腾了半天备份文件确认是C盘的备份文件在备份时就损坏了,还原前赶时间没有备份Win10呵呵C盘所有数据都丢了吧

想一想有一个原厂Win8镜像恢复上,然后再安装Win10Home……嗯还是没办法激活。孩子激活老不好,多半是SKU废了

找了个OEM的镜像果然可以哈哈哈哈

然后我的GRUB呢?
继续阅读 “[Dr.Lib]工欲善其事,必先利其器” »

Windows 10 vs Longhorn

习惯了Start Screen和Charm Bar,现在在WindowsXP上关机都不会关了。想想不久以前还在迷恋Windows7酷炫的Aero、为了Mac的壁纸把Windows 7彻底搞成Mac的样子以及成功的在Windows上玩了一把桌面立方体……LOL,现在还不是Modern UI的支持者。

 

想起来家里买的台式机,大概就是Vista出来后第二年,标配Vista,貌似有Aero……之所以说貌似是因为抱回家的时候就变成蓝天白云一片绿了。现在想想刷回XP还是挺正确的。

XP诞生之时,正好是桌面系统飞速发展的时候,各家各户都用上了电脑。中国电脑桌面系统的标配,从DOS+WPS到了XP+OFFICE。开发软件的越来越多,打包盗版系统的也越来越多,玩游戏的也越来越多……就这样,XP在中国乃至世界的PC上站稳了脚跟。有一台装着XP的电脑,握着一台诺基亚就算是紧跟潮流了。

 

微软也没闲着,时代总要进步嘛,他们也在继续研发,Longhorn,Longhorn Reset,Vista。好吧这是退步了。

继续阅读 “Windows 10 vs Longhorn” »

【Librazy’s Challenge】某解谜游戏的V2,来自Librazy的挑战

啊哈哈哈……不好意思……一年半以前的Librains种种原因坑了,而我现在带来的是基于LibrainX的Librazy’s Challenge

http://im.librazy.org/LibrainX/Challenge.html?levpackaddr=libchallenge.json

本游戏共计三十关,含四个SP关卡。普通关卡,就是要通过所给的数据来猜/算/蒙/解出谜底,来前往下一关,和其他解谜一样啦……

SP关卡呢,则是以文件形式给出的。解开文件里的秘密,寻找其中隐藏的信息吧~

毕竟在下只是一只高三狗,所以说关卡也不至于难到哪去吧……反正要是我失忆了我也绝对解不出来吧(2333

本来准备做一个全面一点的关卡包,做完后才发现其实大部分还是数理知识……应该做起来很轻松的说

因为要去北大夏令营所以说这个谜题还是临时赶工粗来的lol

解开SP关卡的,可以电邮librazy@librazy.org以及站内信联系~
第一个解出SP1~SP3中至少两个的,可能有神秘礼品哦~(唔。。只是我还没有想好而已啦……

更多信息,参见 http://www.guokr.com/post/620570/

https://github.com/Librazy/LibrainX/blob/LibCal/Lib%20Challenge.md

以上

PS:第11关的时间格式为

ddd MMM dd HH:mm:ss UTC+xxxx yyyy

LibrainX——开源解谜游戏框架

Demo 0——Just a Demo 已上线,官方关卡包正在制作中~

http://im.librazy.org/LibrainX/LibrainX.html

Github地址

https://github.com/Librazy/LibrainX/

概述

LibrainX是由Librazy也就是我(目前)独立开发的的开源网页解谜游戏框架

绝对不会真的大概的确没有什么不坑爹的东西.

无需Flash支持.

开源且自由.

支持自动保存进度和选择关卡.

支持制作、选择关卡包.

响应式布局.

采用SHA512和AES加密,破解的指数级复杂度就不信有人推得动.

更多信息

LibrainX的官方关卡包正在制作中,敬请期待.

许可证 !important

源代码:LGPLv3

文档和关卡:署名-相同方式共享3.0中国大陆 CC BY-SA 3.0 CN

技术细节

预计支持平台:暂不支持IE6、7、8,IE9状况未明.

其他主流浏览器较新版本均支持.

主要使用的库:CryptoJS,jQuery,jQuery Migrate,jQuery Color Animations,PuterJam的base64转换工具.

目前进度

还不错的样子.

[Dr.Lib]Note:Math – Elegant Proof II

北京数竞 1957

平面上任取三个格点, 试证:它们不能是正三角形三个顶点

证明:

设三个点分别为\(  A(x_{1},y_{1}),B(x_{2},y_{2}),C(x_{3},y_{3})\)则
\( S_{\Delta ABC}=\frac{1}{2}\begin{Vmatrix}\
x_1&y_1 &1 \\
x_2&y_2 &1 \\
x_3&y_3 &1 \
\end{Vmatrix}\)为有理数,而

\( S_{\Delta ABC}=\frac{\sqrt{3}}{4}((x_1-x_2)^2+(y_1-y_2)^2)\)为无理数,矛盾。

49th Moscow MO 1986

求证:对于实数\(x,y,z\),以下三个式子不可能同时成立。

\( \left | x \right | < \left | y-z \right | , \left | y \right | < \left | z-x \right |, \left | z \right | < \left | x-y \right | \)

证明:

反证法。若三式全部成立,有

\[\left\{\begin{matrix}x^2<(y-z)^2 \
\\ y^2<(z-x)^2
\\ z^2<(x-y)^2 \
\end{matrix} \right. \
\rightarrow \left\{\begin{matrix}(x-y+z)(x+y-z)<0 \
\\ (y-z+x)(y+z-x)<0
\\ (z-x+y)(z+x-y)<0 \
\end{matrix}\right.\]

三式相乘

\(((x+y-z)(y+z-x)(z+x-y))^2<0\)矛盾。

St.Petersburg MO 1988

是否存在两个不等于0的整数\(x,y\),满足其中之一可被它们的和整除,另一个可被差整除?

解答:

不存在。

否则,\(\left |x+y \right |\)、\(\left |x-y \right |\) 必有一个既大于x又大于y。它不可能是\(x\)或\(y\)的约数,矛盾。

 

[Dr.Lib]Note:Math – Elegant Proof I

16th CanadianMO 1984

任给7个实数,求证必有两个数x、y满足:

\[0 \leq\frac{x – y}{1+x y} \leq\frac{\sqrt{3}}{3} \]

拿到题目后第一反应就是和什么公式好像……结果还真是……

证明:

设七个数为\(a_{1}< a_{2}< a_{3}< a_{4}< a_{5}< a_{6}<a_{7}\),令\(\theta _{i}=arctan(a_{i})\)。

有\( \frac{-\pi}{2}<\theta _{1}<\theta _{2}<\theta _{3}<\theta _{4}<\theta _{5}<\theta _{6}<\theta _{7}<\frac{\pi}{2}\)

则必有\( 0<\theta _{i+1}-\theta _{i}\leq \frac{-\pi}{6} i \in \left [ 1,6 \right ] \)

则\( 0<tan(\theta _{i+1}-\theta _{i})= \frac{tan(\theta _{i+1})-tan(\theta _{i})}{1+tan(\theta _{i})tan(\theta _{i+1})}\leq \frac{\sqrt{3}}{3} \)即\[0 \leq \frac{x – y}{1+x y} \leq \frac{\sqrt{3}}{3} \]

练习:

50th Moscow MO 1987 求证:从任意三个正数或四个实数中总能取两个数x,y满足 \[0 \leq \frac{x – y}{1+x y} \leq 1 \]

3th CMO WC 1988

(1)设正数a,b,c满足 \((a^{2}+b^{2}+c^{2})^{2}>2(a^{4}+b^{4}+c^{4})\)

求证:a,b,c是三角形的三边。

(2)设\((a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+ … +a_{n}^{2})^{2}>(n-1)(a_{1}^{4}+a_{2}^{4}+…+a_{n}^{4}) n\geq3\),求证:\({a_{n}}\)中任意三个数是三角形的三边。

看起来就是各种因式分解。。

证明:

(1)

由题意得\(2a^{2}b^{2}+2b^{2}c^{2}+2a^{2}c^{2}-a^{4}-b^{4}-c^{4}>0\)

即\((a+b-c)(a+c-b)(b+c-a)(a+b+c)>0\)

不妨设\(a\geq b \geq\ c\)

有\((b+c-a)>0\)即a,b,c是三角形的三边。

(2)

\(n=3\)时由(1)立即可得。

\(n>3\)时

\[(n-1)(a_{1}^{4}+a_{2}^{4}+…+a_{n}^{4}) \]
\[<(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+ … +a_{n}^{2})^{2} \]
\[=(\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{2}+\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{2}+ … +a_{n}^{2})^{2} \]
\[\leq (n-1)(\frac{(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})^{2}}{4}+\frac{(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})^{2}}{4}+a_{4}^{4}+…+a_{n}^{4}) (柯西不等式) \]
\[=(n-1)(\frac{(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})^{2}}{2}+a_{4}^{4}+…+a_{n}^{4})\]

所以

\((a_{1}^{2}+a_{2}^{2}+a_{3}^{2})^{2}>2(a_{1}^{4}+a_{2}^{4}+a_{3}^{4})\)

由(1)知\(a_{1},a_{2},a_{3}\)是三角形的三边。

由对称性可知,\({a_{n}}\)中任意三个数是三角形的三边。

【To be continued】

[Dr.Lib]Note:Math – 小技巧们 I


有一正三棱锥P-ABC,O为底面ABC中心。过O做动平面QRS,交PA或其延长线于Q,交PB或其延长线于R,交PC或其延长线于S。
那么\(\frac{1}{PQ}+\frac{1}{PR}+\frac{1}{PS}\)()
A 为定值
B 有最大值无最小值
C 有最小值无最大值
D 既无最大值也无最小值

看到这题,我的第一反应是想想GB的《颠倒过来的式子》,不过貌似里面没有这题。当时觉得变形之后也无明显的意义。这时老师提示了一 步:小题,先降维看看。

有一等腰三角形PBC,O为底边BC中点。过O做直线QR,交PB于R,交PC于S。考察\(\frac{1}{PR}+\frac{1}{PS}\)。
\(\frac{1}{PR}+\frac{1}{PS}\)=\(\frac{PR+PS}{PR*PS}\)。有什么想法吗?
算两次:等面积法。设等腰三角形顶角为\(  \alpha \)腰与O点距离为\(  d \)

\(  SPQR=\frac{PS*PR*sin\alpha }{2} \)

\(  SPQR=\frac{d(PS+PR) }{2}\)

\(\frac{1}{PR}+\frac{1}{PS}=\frac{sin\alpha}{d}\)

三维的情况就很好推广了~

PS:某颜正熙同学提出可以用梅氏定理证二维的情况, Orz

[Dr.Lib]Note:Math – \(\Sigma \frac{1}{n^{2}}\)

转载自http://www.ivy-end.com/archives/1098


今天我们来介绍一个曾经在数列题中做过无数遍的数列\(a_{n}=\frac{1}{n^{2}}\),为了方便下文的讨论,我们记\(S_{n}\)为数列\(a_{n}\)的前\(n\)项和。我们做过最熟悉的题目莫过于证明\(S_{n}<2\),这个证明对于大家来说应该是非常容易的\[S_{n}=\sum_{i=1}^{n}\frac{1}{i^{2}}=1+\sum_{i=2}^{n}\frac{1}{i\cdot\left(i-1 \right )}=2-\frac{1}{n}.\]

那么大家是否考虑过,\(\lim_{n \to \infty }S_{n}\)究竟等于多少?我记得严桂华讲过欧拉曾经计算过这个问题,今天在国外一个数学讨论网站上翻到了一篇关于如何计算\(\lim_{n \to \infty }S_{n}\)的问答(原文地址)。在此仅介绍几种方法。

首先给出结果,再用多种方法进行证明\[\lim_{n \to \infty }S_{n}=\frac{\pi^{2}}{6}.\]不得不说,这一结果是非常不可思议的,因为它居然包含了\(\pi\)。读者如果不相信的话,可以自行计算一下,当\(n\)趋向于正无穷时,答案便越接近\(\frac{\pi^{2}}{6}\)。

好了,废话不说,我们进入证明部分。

法一:

当\(0<x<\frac{\pi}{2}\)时,有\(0<\sin{x}<x<\tan{x}\)。至于这个命题的证明,请参考下图:

Mathematics 003-1-1

这样,我们可以得到\[\frac{1}{\tan^{2}{x}}<\frac{1}{x^{2}}<\frac{1}{\sin^{2}{x}}.\]我们知道,\(\frac{1}{\tan^{2}{x}}=\frac{1}{\sin^{2}{x}}-1\)(很容易由三角恒等式导出)。将区间\(\left(0,\frac{\pi}{2}\right)\)等分成\(2^{n}\)个部分,令\(x_{k}=\frac{\pi}{2}\cdot\frac{k}{2^{n}}\),并将不等式两边对\(x_{k}\)进行求和,可以得到\[\sum_{k=1}^{2^n-1} \frac{1}{\sin^2 x_k} – \sum_{k=1}^{2^n-1} 1 < \sum_{k=1}^{2^n-1} \frac{1}{x_k^2} < \sum_{k=1}^{2^n-1} \frac{1}{\sin^2 x_k}.\]我们不妨将不等式右边的表达式记为\(T_{n}\),那么原不等式可以化简为\[T_{n} – \left(2^n – 1\right) < \sum_{k=1}^{2^n-1} \left( \frac{2 \cdot 2^n}{\pi} \right)^2 \frac{1}{k^2} < T_n.\]接下来我们主要考察\(T_{n}\)。它看起来是一个非常复杂的求和,实际上可以非常简单的计算出来。首先,我们考虑下面的式子\[\frac{1}{\sin^2 x} + \frac{1}{\sin^2 (\frac{\pi}{2}-x)} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x \cdot \sin^2 x} = \frac{4}{\sin^2 2x}.\]因此,如果我们将\(T_{n}\)以\(\frac{\pi}{4}\)为中点进行配对(选取区间\(\left(0,\frac{\pi}{2}\right)\)左边的点\(x_{k}\),与右边的点\(\frac{\pi}{2}-x_{k}\)),考虑递推,再加上中点\(\frac{1}{\sin^{2}{\frac{\pi}{4}}}=2\),则可以得到\[T_{n}=4T_{n-1}+2.\]又\(T_{1}=2\),我们可以很容易的得到\(T_{n}\)的通项公式\[T_n = \frac{2(4^n-1)}{3}.\]于是,我们得到了这样的不等式\[\frac{2(4^n-1)}{3} – (2^n-1) \leq \frac{4^{n+1}}{\pi^2} \sum_{k=1}^{2^n-1} \frac{1}{k^2} \leq \frac{2(4^n-1)}{3}.\]两边同时乘以\(\frac{\pi^{2}}{4^{n+1}}\)使得不等式的中间与我们的目标形式更加相似,这样我们又得到一个不等式\[\frac{\pi^{2}}{4^{n+1}} \cdot \frac{2(4^n-1)}{3} – (2^n-1) \leq \sum_{k=1}^{2^n-1} \frac{1}{k^2} \leq\frac{\pi^{2}}{4^{n+1}} \cdot \frac{2(4^n-1)}{3}.\]当\(n\rightarrow\infty\)时,不等式左右两边同时趋向于\(\frac{\pi^{2}}{6}\),由夹逼准则得\(\lim_{n \to \infty }S_{n}=\frac{\pi^{2}}{6}\)。证毕。

法二:

我们可以借助函数\(f\left(x\right)=x^{2},x\in\left[-\pi,\pi\right]\)来找到它对应的三角傅立叶级数\[\frac{a_{0}}{2}+\sum_{n=1}^{\infty }(a_{n}\cos nx+b_{n}\sin x),\]且它是周期收敛的。

又\(f\left(x\right)\)为偶函数,这足够让我们得到它的系数\[a_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(x)\cos nx\;dx\qquad n=0,1,2,3,\cdots,\]因为\[b_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(x)\sin nx\;dx=0\qquad n=1,2,3,\cdots.\]令\(n=0\)得\[a_{0}=\frac{1}{\pi }\int_{-\pi }^{\pi }x^{2}dx=\frac{2}{\pi }\int_{0}^{\pi}x^{2}dx=\frac{2\pi ^{2}}{3}.\]当\(n=1,2,3,\cdots\)时,我们有\[a_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }x^{2}\cos nx\;dx\\=\frac{2}{\pi }\int_{0}^{\pi }x^{2}\cos nx\;dx=\frac{2}{\pi }\times \frac{2\pi }{n^{2}}(-1)^{n}=(-1)^{n}\frac{4}{n^{2}},\]因为\[\int x^2\cos nx\;dx=\frac{2x}{n^{2}}\cos nx+\left( \frac{x^{2}}{n}-\frac{2}{n^{3}}\right) \sin nx.\]因此\[f(x)=\frac{\pi ^{2}}{3}+\sum_{n=1}^{\infty }\left( (-1)^{n}\frac{4}{n^{2}}\cos nx\right).\]又\(f\left(\pi\right)=\pi^{2}\),我们可以得到\[\pi ^{2}=\frac{\pi ^{2}}{3}+\sum_{n=1}^{\infty }\left( (-1)^{n}\frac{4}{n^{2}}\cos \left( n\pi \right) \right)\]即\[\pi ^{2}=\frac{\pi ^{2}}{3}+4\sum_{n=1}^{\infty }\left( (-1)^{n}(-1)^{n}\frac{1}{n^{2}}\right)\]进一步化简得\[\pi ^{2}=\frac{\pi ^{2}}{3}+4\sum_{n=1}^{\infty }\frac{1}{n^{2}}.\]因此\[\sum_{n=1}^{\infty }\frac{1}{n^{2}}=\frac{\pi ^{2}}{4}-\frac{\pi ^{2}}{12}=\frac{\pi ^{2}}{6}.\]证毕。

法三:

当\(x=0\)时\(\sin{x}\)可以使用泰勒级数展开\[\sin x = x – \frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots.\]于是我们可以得到\[\frac{x^3}{3!}=x\left(\frac{x^2}{\pi^2} + \frac{x^2}{2^2\pi^2}+ \frac{x^2}{3^2\pi^2}+\cdots\right)=x^3\sum_{n=1}^{\infty}\frac{1}{n^2\pi^2},\]即\[\sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6}.\]证毕。

法四:

设\(z\)为复数,考虑\[\frac{\pi^2}{\sin^2\pi z}=\sum_{n=-\infty}^{\infty}\frac{1}{(z-n)^2}\]由复变函数分析可得\[\frac{\pi^2}{\sin^2\pi z}-\frac{1}{z^2}=\sum_{n=1}^{\infty}\frac{1}{(z-n)^2}+\sum_{n=1}^{\infty}\frac{1}{(z+n)^2}.\]这样,当右边\(z=0\)时,我们就可以得到\[\lim_{z\to 0}\left(\frac{\pi^2}{\sin^2\pi z}-\frac{1}{z^2}\right)=2\sum_{n=1}^{\infty}\frac{1}{n^2}.\]又\[\lim_{z\to 0}\left(\frac{\pi^2}{\sin^2\pi z}-\frac{1}{z^2}\right)=\frac{\pi^2}{3}.\]因此\[\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}.\]证毕。

法五:

这是欧拉的方法。令\[s=\sin^{-1}{x}.\]那么\[\int_{0}^{\frac{\pi}{2}}sds=\frac{\pi^{2}}{8}.\]但是\[\int\limits_0^1 {\frac{{{{\sin }^{ – 1}}x}}{{\sqrt {1 – {x^2}} }}dx} = \frac{{{\pi ^2}}}{8}.\]又\[{\sin ^{ – 1}}x = \int {\frac{{dx}}{{\sqrt {1 – {x^2}} }}} = x + \frac{1}{2}\frac{{{x^3}}}{3} + \frac{{1 \cdot 3}}{{2 \cdot 4}}\frac{{{x^5}}}{5} + \frac{{1 \cdot 3 \cdot 5}}{{2 \cdot 4 \cdot 6}}\frac{{{x^7}}}{7} + \cdots.\]我们可以得到\[\int\limits_0^1 {\left\{ {\frac{{dx}}{{\sqrt {1 – {x^2}} }}\int {\frac{{dx}}{{\sqrt {1 – {x^2}} }}} } \right\}} = \int\limits_0^1 {\left\{ {x + \frac{1}{2}\frac{{{x^3}}}{3}\frac{{dx}}{{\sqrt {1 – {x^2}} }} + \frac{{1 \cdot 3}}{{2 \cdot 4}}\frac{{{x^5}}}{5}\frac{{dx}}{{\sqrt {1 – {x^2}} }} + \cdots } \right\}}.\]但是\[\int\limits_0^1 {\frac{{{x^{2n + 1}}}}{{\sqrt {1 – {x^2}} }}dx} = \frac{{2n}}{{2n + 1}}\int\limits_0^1 {\frac{{{x^{2n – 1}}}}{{\sqrt {1 – {x^2}} }}dx}.\]这样,可以得到\[\int\limits_0^1 {\frac{{{x^{2n + 1}}}}{{\sqrt {1 – {x^2}} }}dx} = \frac{{\left( {2n} \right)!!}}{{\left( {2n + 1} \right)!!}}.\]又所有的次数都是奇数,所以最终的结果为\[\frac{{{\pi ^2}}}{8} = 1 + \frac{1}{2}\frac{1}{3}\left( {\frac{2}{3}} \right) + \frac{{1 \cdot 3}}{{2 \cdot 4}}\frac{1}{5}\left( {\frac{{2 \cdot 4}}{{3 \cdot 5}}} \right) + \frac{{1 \cdot 3 \cdot 5}}{{2 \cdot 4 \cdot 6}}\frac{1}{7}\left( {\frac{{2 \cdot 4 \cdot 6}}{{3 \cdot 5 \cdot 7}}} \right) \cdots,\]\[\frac{{{\pi ^2}}}{8} = 1 + \frac{1}{{{3^2}}} + \frac{1}{{{5^2}}} + \frac{1}{{{7^2}}} + \cdots.\]令\[1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + \cdots = \omega.\]则\[\frac{1}{{{2^2}}} + \frac{1}{{{4^2}}} + \frac{1}{{{6^2}}} + \frac{1}{{{8^2}}} + \cdots = \frac{\omega }{4}.\]这样,我们可以得到\[\frac{\omega }{4} + \frac{{{\pi ^2}}}{8} = \omega.\]即\[\omega = \frac{{{\pi ^2}}}{6}.\]证毕。

法六:

\[\sum_{i=1}^{n}\frac{1}{i^{2}}=\zeta(2)=\frac{4}{3}\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\frac{4}{3}\int_{0}^{1}\frac{\log y}{y^2-1}dy\]\[=\frac{2}{3}\int_{0}^{1}\frac{1}{y^2-1}\left[\log\left(\frac{1+x^2 y^2}{1+x^2}\right)\right]_{x=0}^{+\infty}dy=\frac{4}{3}\int_{0}^{1}\int_{0}^{+\infty}\frac{x}{(1+x^2)(1+x^2 y^2)}dx\,dy\]
\[=\frac{4}{3}\int_{0}^{1}\int_{0}^{+\infty}\frac{dx\, dz}{(1+x^2)(1+z^2)}=\frac{4}{3}\cdot\frac{\pi}{4}\cdot\frac{\pi}{2}=\frac{\pi^2}{6}.\]证毕。

就介绍这几种方法吧,大家可以有选择的进行阅读。以后数学作业中再有证明\(S_{n} < 2\)的时候,不妨这样写\(\lim_{n \to \infty }S_{n}=\frac{\pi}{6} < 2\),怕老师不承认,可以顺便证明一下,至于给不给分,就不好说了。

 

[Dr.Lib]Note:Math – Iverson bracket

In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that denotes a number that is 1 if the condition in square brackets is satisfied, and 0 otherwise. More exactly,

\( [P] = \begin{cases} 1 & \text{if } P \text{ is true;} \\ 0 & \text{otherwise.} \end{cases} \)

where P is a statement that can be true or false. This notation was introduced by Kenneth E. Iverson in his programming language APL,while the specific restriction to square brackets was advocated by Donald Knuth to avoid ambiguity in parenthesized logical expressions.

The Iverson bracket converts a Boolean value to an integer value through the natural map \( \textbf{false}\mapsto 0; \textbf{true}\mapsto1 \), which allows counting to be represented as summation. For instance, the Euler phi function that counts the number of positive integers up to n which are coprime to n can be expressed by

\( \phi(n)=\sum_{i=1}^{n}[\gcd(i,n)=1],\qquad\text{for }n\in\mathbb N^+. \)

More generally the notation allows moving boundary conditions of summations (or integrals) as a separate factor into the summand, freeing up space around the summation operator, but more importantly allowing it to be manipulated algebraically. For example

\( \sum_{1\le i \le 10} i^2 = \sum_{i} i^2[1 \le i \le 10]. \)

In the first sum, the index \( i \) is limited to be in the range 1 to 10. The second sum is allowed to range over all integers, but where i is strictly less than 1 or strictly greater than 10, the summand is 0, contributing nothing to the sum. Such use of the Iverson bracket can permit easier manipulation of these expressions.

Another use of the Iverson bracket is to simplify equations with special cases. For example, the formula

\( \sum_{1\le k\le n \atop \gcd(k,n)=1}\!\!k = \frac{1}{2}n\varphi(n) \)

which is valid for n > 1 but which is off by 1/2 for n = 1. To get an identity valid for all positive integers n (i.e., all values for which \(\phi(n) \) is defined), a correction term involving the Iverson bracket may be added:

\( \sum_{1\le k\le n \atop \gcd(k,n)=1}\!\!k = \frac{1}{2}n(\varphi(n)+[n=1]) \)

 -By Wikipedia https://en.wikipedia.org/wiki/Iverson_bracket

Via Ivy – End  http://www.ivy-end.com/archives/1064

闲来无事,逛逛Mathematics。看到一道关于数列的题目,不妨拿来研究一下。原题地址

题目是这么说的,计算\[\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n} \right )^{2}+\cdots + \left ( \frac{1}{n-1}+\frac{1}{n} \right )^{2}+\left ( \frac{1}{n} \right )^{2}.\]各位可以自己动笔计算一下。

下面我们主要讨论一下给出的两种种解法。

法一:

令\(S_{n}=\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n} \right )^{2}+\cdots + \left ( \frac{1}{n-1}+\frac{1}{n} \right )^{2}+\left ( \frac{1}{n} \right )^{2}\)。

则\[S_{n}-S_{n-1}=\left [\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n} \right )^{2}+\cdots + \left ( \frac{1}{n-1}+\frac{1}{n} \right )^{2}+\left ( \frac{1}{n} \right )^{2} \right ]\\-\left [\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n-1} \right )^{2}+\cdots + \left ( \frac{1}{n-2}+\frac{1}{n-1} \right )^{2}+\left ( \frac{1}{n-1} \right )^{2} \right ].\]整理得\[S_{n}-S_{n-1}=\left [\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n-1} \right )^{2}+2\cdot\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n-1} \right )\cdot\left ( \frac{1}{n} \right )+\left ( \frac{1}{n} \right )^{2} \right ]\\ + \left [ \left ( \frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n-1} \right )^{2}+2\cdot\left ( \frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n-1} \right )\cdot\left ( \frac{1}{n} \right )+\left ( \frac{1}{n} \right )^{2} \right ]\\ + \cdots + \left [ \left ( \frac{1}{n-1} \right )^{2}+2\cdot\left ( \frac{1}{n-1} \right )\cdot\left ( \frac{1}{n} \right )+\left ( \frac{1}{n} \right )^{2} \right ]+\left [ \left ( \frac{1}{n} \right )^{2} \right ]\\-\left [\left ( 1+\frac{1}{2}+\cdots + \frac{1}{n-1} \right )^{2}+\cdots + \left ( \frac{1}{n-2}+\frac{1}{n-1} \right )^{2}+\left ( \frac{1}{n-1} \right )^{2} \right ].\]化简得\[S_{n}-S_{n-1}=n\cdot\left ( \frac{1}{n} \right )^{2}+2\cdot\frac{1}{n}\cdot\left [ 1+2\cdot\frac{1}{2}+3\cdot\frac{1}{3}+\cdots +\left ( n-1 \right )\cdot\frac{1}{n-1} \right ].\]即\[S_{n}-S_{n-1}=\frac{1}{n}+\frac{2\left ( n-1 \right )}{n}=2-\frac{1}{n}.\]运用累加法求和即可得到\[S_{n}=2n-H_{n}.\]其中\(H_{n}=1+\frac{1}{2}+\frac{1}{2}+\cdots +\frac{1}{n}.\)

法二:

这种方法比第一种方法高明很多,它需要用到一个引理——Iverson Bracket。简单的介绍一下这个引理,它的符号是中括号,当且仅当中括号里的表达式成立时,其值为\(1\),否则为\(0\)。例如\(\left [ 1 < 2 \right ]=1\),而\(\left [ 1 > 2 \right ]=0\)。

下面我们就用Iverson Bracket来求解这个问题\[S_{n}=\sum_{k}\left ( \sum_{i}\frac{1}{i}\cdot\left [ k \leq i \right ] \right )^{2}=\sum_{k}\sum_{i,j}\frac{1}{ij}\cdot\left [ k \leq i, k \leq j \right ]=\sum_{i,j}\frac{1}{ij}\sum_{k}\left [ k \leq \min\left ( i,j \right ) \right ].\]即\[S_{n}=\sum_{i,j}\frac{1}{ij}\cdot\min\left ( i,j \right )=\sum_{i,j}\frac{1}{\max\left ( i,j \right )}=\sum_{m}\frac{1}{m}\sum_{i,j}\left [ \max\left ( i,j \right )=m \right ].\]即\[S_{n}=\sum_{m}\frac{1}{m}\cdot\left ( 2m-1 \right )=2n-\sum_{m}\frac{1}{m}=2-H_{n}.\]