[Dr.Lib]Note:Data Structures – Size Balanced Tree – I

。。按惯例笔记贴都是摘抄、转载的……TAT看了半天貌似还是不会写的样子……滚回去复习主席树了

Via NOCOW http://www.nocow.cn/index.php/Size_Balanced_Tree

Size Balanced Tree(SBT)是一种平衡二叉查找树。它的论文由中国广东中山纪念中学的陈启峰于2006年底完成,并在Winter Camp 2007中发表。由于SBT的拼写很容易找到中文谐音,它常被中国的OIer们戏称为“傻X树”、“Super BT”等。但它的性能并不SB,编写起来也并不BT。恰恰相反,SBT易于实现,且据陈启峰论文中所言,“这是目前为止速度最快的高级二叉搜索树”。它能在O(logn)的时间内完成所有BST的相关操作。而且由于SBT赖以保持平衡的是Size域而不是其他“无用”的域,它可以很方便地实现动态顺序统计中的select和rank。

性质

Size Balanced Tree(SBT)是一种通过大小(Size)域来保持平衡的二叉搜索树,它也因此得名。它总是满足:
对于SBT的每一个结点 t:

  1. 性质(a) s[right[t] ]≥s[left[left[t]]],s[right[left[t]]]
  2. 性质(b) s[left[t] ]≥s[right[right[t]]],s[left[right[t]]]

即每棵子树的大小不小于其兄弟的子树大小。

 

 

 

 

Sbt1.PNG
如图(圈代表结点,三角代表SBT,下同):

 

 

 

 

  1. s[R] ≥ s[A],s[B]
  2. s[L] ≥ s[C],s[D]

旋转

SBT的旋转(Rotations)与其他许多高级BST相同。它是下面提到的Maintain操作的基础。
Sbt2.PNG

 

 

保持性质(Maintain)

当我们插入或删除一个结点后,SBT的大小就发生了改变。这种改变有可能导致性质(a)或(b)被破坏。这时,我们需要用Maintain操作来修复这棵树。Maintain操作是SBT中最具活力的一个独特过程;Maintain(T)用于修复以T为根的 SBT。调用Maintain(T)的前提条件是T的子树都已经是SBT了。
我们需要讨论的有4种情况。由于性质a和性质b是对称的,所以我们仅仅详细的讨论性质a。

  1. 第一种情况:s[left[left[t]]>s[right[t]]
    Sbt1.PNG
    如图3,执行完Insert(left[t],v)后发生S[A]>S[R],我们可以执行以下的指令来修复SBT:
    1. 首先执行Right-Ratote(t),这个操作让图3变成图4;
      Sbt4.PNG
    2. 在这之后,有时候这棵树还仍然不是一棵SBT,因为 s[C]>s[B] 或者 s[D]>s[B] 也是可能发生的。所以就有必要继续调用Maintain(T)。
    3. 结点L的右子树有可能被连续调整,因为有可能由于性质的破坏需要再一次运行Maintain(L)。
  2. 第二种情况:s[right[left[t]]>s[right[t]]
    Sbt5.PNG
    在执行完Insert(left[t],v)后发生s[B]>s[R],如图5,这种调整要比情况1复杂一些。我们可以执行下面的操作来修复:
    1. 在执行完Left-Ratote(L)后,图5就会变成下面图6那样了。
      Sbt6.PNG
    2. 然后执行Right-Ratote(T),最后的结果就会由图6转变成为下面的图7。
      Sbt7.PNG
    3. 在第1步和第2步过后,整棵树就变得非常不可预料了。万幸的是,在图7中,子树A、E、F和R仍就是SBT,所以我们可以调用Maintain(L)和Maintain(T)来修复结点B的子树。
    4. 在第3步之后,子树都已经是SBT了,但是在结点B上还可能不满足性质a或性质b,因此我们需要再一次调用Maintain(B)。
  3. 第三种情况:s[right[right[t]]>s[left[t]]
    与情况1对称。
  4. 第四种情况:s[left[right[t]]>s[left[t]]
    与情况2对称。

通过前面的分析,很容易写出一个普通的Maintain。

前面的标准过程的伪代码有一点复杂和缓慢。通常我们可以保证性质a和性质b的满足,因此我们只需要检查情况1和情况2或者情况3和情况4,这样可以提高速度。所以在那种情况下,我们需要增加一个布尔(boolean)型变量:flag,来避免毫无意义的判断。如果flag是false,那么检查情况1和情况2;否则检查情况3和情况4。

为什么Maintain(left[t],true)和Maintain(right[t],false)被省略了呢?

……且听下回分解

CC BY-SA 4.0 [Dr.Lib]Note:Data Structures – Size Balanced Tree – I by Liqueur Librazy is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

5 thoughts on “[Dr.Lib]Note:Data Structures – Size Balanced Tree – I

发表评论

电子邮件地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据